IESSF Emerging Technologies in Lighting

The Hottest, Smartest, & (Mostly) Non-IoT

IESSF Emerging Technologies in Lighting

The Hottest, Smartest, & (Mostly) Non-IoT

Dynamic Optics for Lighting

Tom Killick

VP Business Dev, LensVector

What it is

Dynamic Control of **beam shape** in the palm of your hand

Without Moving Parts

https://vimeo.com/199243790

Dissection Heat sink & Housing Light engine + LVS3

Adding Adaptive Optics

Technology : Micro LC Lens

Light Propagation in LC Molecules

Treat the two resolved polarizations separately

Electric Field Controls Orientation

Molecular Action

Recap: How does it work?

- Solid-state control of light using liquid crystals
 - Molecular orientation changes are obtained by changing electric field profiles hence inducing a corresponding gradient of refractive index.
- Properties of Liquid Crystals
 - Birefringence
 - Aligned nematic LC's are uniaxially birefringent.

No – Ne can be >0.2 (calcite is 0.17, quartz is 0.01)

- Self-organizing
 - LC molecules tend to align with each other.
- Rotated by E-field
 - Applying an E-field torques the molecules, rotating the birefringent axis.

Recap: Liquid Crystal Cell

- Alignment layers orient the molecules initially
- Applying an E-field rotates them
- n effective is tuned

A Gradient E-field

- Stronger at the edges than at the center, the effective index is lower at the edge than in the center,
 - creating a positive GRIN lens

Gradient Birefringent Lens

- Optical power is proportional to OPD variation:
 - LC cell thickness
 - LC birefringence
- And inversely proportional to (clear aperture)²
- Practical limits to LC cell thickness are imposed by response time and optical parameters.

Practical Considerations

- Optical Transmission 78 to 90 %
 - Losses primarily due to scattering, absorption less than 5%
- Power consumption single digit mW
- Expected lifetime 10,000's hours
 - Simpler device than LCD TV same materials
- Competitively priced

The Future

Complete control of beam shape
Micro long addressing

Micro lens addressing

- Beam Steering
- BATWINGS!???

Thank You!

LensVector t.killick@lensvector.com